Trigonometrical Equations
normal

Number of solutions of $\sqrt {\tan \theta }  = 2\sin \theta ,\theta  \in \left[ {0,2\pi } \right]$ is equal to 

A

$2$

B

$4$

C

$5$

D

$6$

Solution

Let $\tan \theta=t \Rightarrow \theta \in[0, \pi / 2] \cup\{\pi, 2 \pi\}$

$\Rightarrow \sqrt{t}=2 \sin \theta$

squaring

$\left(1+\frac{1}{t^{2}}\right) t=4$

$\mathrm{t}+\frac{1}{\mathrm{t}}=4 \Rightarrow \mathrm{t}=2+\sqrt{3}, 2-\sqrt{3}$

$\Rightarrow \theta=0, \frac{\pi}{12}, \frac{5 \pi}{12}, \pi, 2 \pi$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.